Hierarchical Position Embedding
预训练模型 预训练的三种embedding
word_embedding: [vocab_size, hidden_size]
position_embedding: [max_len, hidden_size]
token_type_embedding: [token_type_size, hidden_size]
Paddle dtype
Tokenizer offerset mapping
paddle implements torch.repeat_interleave/K.repeat_elements using paddle.reshape & paddle.tile
https://pytorch.org/docs/stable/generated/torch.Tensor.repeat.html#torch.Tensor.repeat
https://pytorch.org/docs/stable/generated/torch.repeat_interleave.html
If the repeats is tensor([n1, n2, n3, …]), then the output will be tensor([0, 0, …, 1, 1, …, 2, 2, …, …]) where 0 appears n1 times, 1 appears n2 times, 2 appears n3 times, etc.
torch.repeat¶
torch.repeat_interleave¶
Mac m1 install Paddle
Mac m1系统mini-conda,环境安装paddle问题?
conda activate paddle
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
Looking in indexes: https://mirror.baidu.com/pypi/simple
ERROR: Could not find a version that satisfies the requirement paddlepaddle
ERROR: No matching distribution found for paddlepaddle
https://github.com/PaddlePaddle/Paddle/issues/32377
macOS 版本 10.x/11.x (64 bit) (不支持GPU版本)
Python 版本 3.6/3.7/3.8/3.9 (64 bit)
pip 或 pip3 版本 20.2.2或更高版本 (64 bit)
CONDA_SUBDIR=osx-64 conda create -n paddle python==3.8.10 // create a new environment called pd_rosetta with intel packages.
conda activate paddle
python -c "import platform;print(platform.machine())" // should be ‘x86_64’ not ‘arm64’
conda env config vars set CONDA_SUBDIR=osx-64 // # make sure that conda commands in this environment use intel packages
conda deactivate
conda activate paddle
echo "CONDA_SUBDIR: $CONDA_SUBDIR"
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
more ...
Data EDA
Bert as Service
git clone git@github.com:hanxiao/bert-as-service.git
docker build -t bert-as-service -f ./docker/Dockerfile .
docker run --runtime nvidia -itd -p 8022:5555 -p 8021:5556 -v /bert-as-service/server/model/:/model -t bert-as-service 1 128
usage: /usr/local/bin/bert-serving-start -http_port 8125 -num_worker=4 -max_seq_len=64 -max_batch_size=512 -model_dir /model
ARG VALUE
__________________________________________________
ckpt_name = bert_model.ckpt
config_name = bert_config.json
cors = *
cpu = False
device_map = []
do_lower_case = True
fixed_embed_length = False
fp16 = False
gpu_memory_fraction = 0.5
graph_tmp_dir = None
http_max_connect = 10
http_port = 8125
mask_cls_sep = False
max_batch_size = 512
max_seq_len = 64
model_dir = /model
no_position_embeddings = False
no_special_token = False
num_worker = 4
pooling_layer = [-2]
pooling_strategy = REDUCE_MEAN
port = 5555
port_out = 5556
prefetch_size = 10
priority_batch_size = 16
show_tokens_to_client = False
tuned_model_dir = None
verbose = False
xla = False
more ...