tensor.stride()

Stride is the jump necessary to go from one element to the next one in the specified dimension dim.

一个元素到另一个元素,元素粒度

任意维度上的步长,是其低维度乘积。

shape: (12, 512, 768) stride: (512x768x1, 768x1, 1x1)

tensor.as_strided()

  • input (Tensor) – the input tensor.

  • size (tuple or ints) – the shape of the output tensor

  • stride (tuple or ints) – the stride of the output tensor

  • storage_offset (int, optional) – the offset in the underlying storage of the output tensor

由input张量,以指定的size, stride, storage_offset创建新的view。

In [2]:
import torch

tensor.stride

In [46]:
x = torch.randn(3, 2, 4)
x
Out[46]:
tensor([[[ 0.9071,  0.2834, -0.1989, -1.4063],
         [-1.7204,  1.7097, -1.2490,  1.1157]],

        [[ 1.7791,  0.6694,  0.3891, -0.0156],
         [-1.6843, -1.1728,  0.0408, -0.7561]],

        [[ 0.9002,  1.4651,  0.7972,  1.1046],
         [ 1.4144,  0.3738,  0.4680,  0.9603]]])
In [77]:
print(f"0维度上的步长:{len(x[0]) * len(x[0][0] * 1)}\n"
      f"1维度上的步长:{len(x[0][0]) * 1}\n"
      f"2维度上的步长:{1 * 1}")

x.stride()
0维度上的步长:8
1维度上的步长:4
2维度上的步长:1
Out[77]:
(8, 4, 1)
In [78]:
x[0]
Out[78]:
tensor([[ 0.9071,  0.2834, -0.1989, -1.4063],
        [-1.7204,  1.7097, -1.2490,  1.1157]])
In [67]:
x[0][0]
Out[67]:
tensor([ 0.9071,  0.2834, -0.1989, -1.4063])
In [59]:
x[0][0][0]
Out[59]:
tensor(0.9071)
In [61]:
x.shape
Out[61]:
torch.Size([3, 2, 4])
In [84]:
x1 = torch.randn(2, 3, 5) # stride: (3 * 5 * 1, 5 * 1, 1 * 1)
print(x1)
x1.stride()
tensor([[[-0.2049,  1.7724, -0.4653,  0.2304, -0.6612],
         [-0.4517, -1.1064, -1.3647, -0.7284,  0.2986],
         [ 0.4436, -0.0191,  2.6322,  0.2686,  0.7015]],

        [[ 1.6355,  0.7517, -0.9918,  0.2702,  1.8537],
         [ 0.2296, -1.2191,  0.1392, -0.7129, -0.9681],
         [-1.5700,  0.2363,  0.3035,  0.7965,  1.3703]]])
Out[84]:
(15, 5, 1)
In [75]:
x2 = torch.randn(10, 15, 256, 64) # stride: (15 * 256 * 64 * 1, 256 * 64 * 1, 64 * 1, 1 *1)
print((15 * 256 * 64 * 1, 256 * 64 * 1, 64 * 1, 1 *1))
x2.stride()
(245760, 16384, 64, 1)
Out[75]:
(245760, 16384, 64, 1)

tensor.as_strided

In [104]:
x1.as_strided((2,2,2), (16,10,4))
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
/tmp/ipykernel_23801/2376004043.py in <module>
----> 1 x1.as_strided((2,2,2), (16,10,4))

RuntimeError: setStorage: sizes [2, 2, 2], strides [16, 10, 4], storage offset 0, and itemsize 4 requiring a storage size of 124 are out of bounds for storage of size 120
In [105]:
h = torch.randn(12,8,512,64)
In [106]:
h.stride()
Out[106]:
(262144, 32768, 64, 1)
In [ ]:
 

Comments